Heuristic and exact algorithms for the max-min optimization of the multi-scenario knapsack problem

نویسندگان

  • Fumiaki Taniguchi
  • Takeo Yamada
  • Seiji Kataoka
چکیده

We are concerned with a variation of the standard 0–1 knapsack problem, where the values of items differ under possible S scenarios. By applying the ‘pegging test’ the ordinary knapsack problem can be reduced, often significantly, in size; but this is not directly applicable to our problem. We introduce a kind of surrogate relaxation to derive upper and lower bounds quickly, and show that, with this preprocessing, the similar pegging test can be applied to our problem. The reduced problem can be solved to optimality by the branch-and-bound algorithm. Here, we make use of the surrogate variables to evaluate the upper bound at each branch-and-bound node very quickly by solving a continuous knapsack problem. Through numerical experiments we show that the developed method finds upper and lower bounds of very high accuracy in a few seconds, and solves larger instances to optimality faster than the previously published algorithms. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heuristic and Exact Algorithms for the Interval Min-Max Regret Knapsack Problem

We consider a generalization of the 0-1 knapsack problem in which the profit of each item can take any value in a range characterized by a minimum and a maximum possible profit. A set of specific profits is called a scenario. Each feasible solution associated with a scenario has a regret, given by the difference between the optimal solution value for such scenario and the value of the considere...

متن کامل

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...

متن کامل

Meta-heuristic Algorithms for an Integrated Production-Distribution Planning Problem in a Multi-Objective Supply Chain

In today's globalization, an effective integration of production and distribution plans into a unified framework is crucial for attaining competitive advantage. This paper addresses an integrated multi-product and multi-time period production/distribution planning problem for a two-echelon supply chain subject to the real-world variables and constraints. It is assumed that all transportations a...

متن کامل

A virtual pegging approach to the max-min optimization of the bi-criteria knapsack problem

We are concerned with a variation of the knapsack problem, the bi-objective max–min knapsack problem (BKP), where the values of items differ under two possible scenarios. We have given a heuristic algorithm and an exact algorithm to solve this problem. In particular, we introduce a surrogate relaxation to derive upper and lower bounds very quickly, and apply the pegging test to reduce the size ...

متن کامل

New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & OR

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2008